首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   201篇
  免费   5篇
  国内免费   1篇
测绘学   3篇
大气科学   17篇
地球物理   59篇
地质学   73篇
海洋学   20篇
天文学   7篇
综合类   1篇
自然地理   27篇
  2023年   1篇
  2021年   2篇
  2020年   5篇
  2019年   6篇
  2018年   11篇
  2017年   4篇
  2016年   4篇
  2015年   6篇
  2014年   11篇
  2013年   16篇
  2012年   12篇
  2011年   19篇
  2010年   14篇
  2009年   6篇
  2008年   13篇
  2007年   8篇
  2006年   10篇
  2005年   5篇
  2004年   9篇
  2003年   5篇
  2002年   4篇
  2001年   2篇
  2000年   2篇
  1999年   3篇
  1998年   5篇
  1997年   1篇
  1996年   6篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1987年   1篇
  1986年   1篇
  1984年   3篇
  1982年   2篇
  1975年   1篇
  1968年   1篇
  1967年   3篇
排序方式: 共有207条查询结果,搜索用时 515 毫秒
41.
A combined compositional and Hf, Nd and Sr isotopic study was performed on a suite of samples of progressively deformed granite from a mylonite zone in the Harquahala Mountains, western Arizona, to evaluate the effects of deformation and metamorphism on the isotopic systematics of typical continental crustal rocks. The 1.4 Ga Harquahala Granite was deformed during Mesozoic thrusting along the Harquahala thrust. Granite in the resulting 60 m wide shear zone ranges from protomylonite to ultramylonite. In most of these mylonites, the protolith is not megascopically recognizable, and can be discerned only by the progressive transition to undeformed granite. Isotopic analyses of Hf, Nd and Sr from the shear zone document the immobility of the Hf and Nd isotopic systems relative to that of the Sr isotopic system during deformation. The Rb–Sr isotopic data show considerable scatter on an isochron plot, exhibiting both gains and losses of Rb and Sr from the whole-rock systems. In contrast, the Sm–Nd and Lu–Hf isotopic systematics are mostly well behaved on isochron diagrams, plotting mostly in tight clusters or along 1.4 Ga isochrons. These results show that while the Sr isotopic system in crustal rocks is quite susceptible to later tectonic disturbance, both Hf and Nd isotopic systems can provide reliable model age information in continental crustal terranes even when the rocks have been subjected to low to medium grades of deformation and metamorphism.  相似文献   
42.
43.
Submodels of a Brackish Water Environment   总被引:2,自引:0,他引:2  
  相似文献   
44.
Three-dimensional (3D) seismic data acquired for hydrocarbon exploration reveal that gas accumulations are common within the 2–3 km thick Plio-Pleistocene stratigraphic column of the south-western Barents Sea continental margin. The 3D seismic data have relatively low-frequency content (<40 Hz) but, due to dense spatial sampling, long source-receiver offsets, 3D migration and advanced interpretation techniques, they provide surprisingly detailed images of inferred gas accumulations and the sedimentary environments in which they occur. The presence of gas is inferred from seismic reflection segments with anomalously high amplitude and reversed phase, compared with the seafloor reflection, so-called bright spots. Fluid migration is inferred from vertical zones of acoustic masking and acoustic pipes. The 3D seismic volume allows a spatial analysis of amplitude anomalies inferred to reflect the presence of gas and fluids. At several locations, seismic attribute maps reveal detailed images of flat spots, inferred to represent gas–water interfaces. The data indicate a focused fluid migration system, where sub-vertical faults and zones of highly fractured sediments are conduits for the migration of gas-bearing fluids in Plio-Pleistocene sediments. Gas is interpreted to appear in high-porosity fan-shaped sediment lobes, channel and delta deposits, glacigenic debris flows and sediment blocks, probably sealed by low-permeability, clayey till and/or (glacio)marine sediments. Gas and fluid flow are here attributed mainly to rapid Plio-Pleistocene sedimentation that loaded large amounts of sedimentary material over lower-density, fine-grained Eocene oozes. This probably caused pore-fluid dewatering of the high-fluid content oozes through a network of polygonal faults. The study area is suggested to have experienced cycles of fluid expulsion and hydrocarbon migration associated with glacial–interglacial cycles.  相似文献   
45.
Multichannel seismic data, containing high-amplitude reflections from Cenozoic sediments of the Bjørnøya Basin, southwestern Barents Sea, have been studied, inferring the existence of gas hydrate and free gas. The Cenozoic succession comprises Late Palaeocene and Early Eocene claystones and siltstones and locally also some sandstones overlain by Late Pleistocene glaciogenic sediments. The inferred gas hydrate and free gas accumulations are mainly located in the vicinity of larger faults which can be followed up to base Tertiary level, and which seem to have controlled the geographical distribution of the accumulations. Free gas accumulations are inferred to occur most frequently within the Late Palaeocene strata that occur below the gas hydrate stability zone, and indicate that relatively small gas leakages from deeper accumulations have dominated. Larger gas leakages have probably led to gas migration up into the gas hydrate stability zone and, together with the increasing thickness of the hydrate stability zone towards the north, control the distribution of the suspected gas hydrates. The inferred gas leakages are closely related to the Cenozoic evolution of the Barents Sea, and are probably caused by gas expansion due to the removal of up to 1 km of sediments from the Barents Sea shelf and/or reservoir tilting during the Late Cenozoic glaciations which affected this area.  相似文献   
46.
Ocean wave energy is an emerging kind of renewable energy, and several energy conversion methods are available today. One solution is to connect a buoy to a linear generator. Such units are quite small (10–100 kW), and farm solutions are suggested to increase power production. This paper shows the results from small farm simulations where the translator motion is varied for the generators in the farm.Simulations with five and 10 units show that power fluctuations decrease with an increasing number of generators.  相似文献   
47.
The Miocene palaeogeographic evolution of the Paratethys Sea is still poorly constrained. Here, we use modern Mediterranean biochronology to provide an up‐to‐date overview of changing seas in Central Europe. Instead of a Paratethys that waxed and waned with fluctuating global sea levels, we show that the development of different seas was mainly controlled by tectonic phases. The Early Miocene “Ottnangian Sea” (~18 Ma) was connected to the Mediterranean via the Rhône valley, while the “Karpatian Sea” (~16.5 Ma) was initiated by a tectonically induced marine transgression through the Trans‐Tethyan gateway. In most Central European basins, the establishment of the “Badenian Sea” (<15.2 Ma), triggered by subduction‐related processes in the Pannonian and Carpathian domain, is significantly younger (by ~1 Myr) than usually estimated. The updated palaeogeographic reconstructions provide a better understanding of the concepts of basin dynamics, land–sea distribution and palaeoenvironmental change in the Miocene of Central Europe.  相似文献   
48.
Future changes in vegetation and ecosystem function of the Barents Region   总被引:1,自引:0,他引:1  
The dynamic vegetation model (LPJ-GUESS) is used to project transient impacts of changes in climate on vegetation of the Barents Region. We incorporate additional plant functional types, i.e. shrubs and defined different types of open ground vegetation, to improve the representation of arctic vegetation in the global model. We use future climate projections as well as control climate data for 1981–2000 from a regional climate model (REMO) that assumes a development of atmospheric CO2-concentration according to the B2-SRES scenario [IPCC, Climate Change 2001: The scientific basis. Contribution working group I to the Third assessment report of the IPCC. Cambridge University Press, Cambridge (2001)]. The model showed a generally good fit with observed data, both qualitatively when model outputs were compared to vegetation maps and quantitatively when compared with observations of biomass, NPP and LAI. The main discrepancy between the model output and observed vegetation is the overestimation of forest abundance for the northern parts of the Kola Peninsula that cannot be explained by climatic factors alone. Over the next hundred years, the model predicted an increase in boreal needle leaved evergreen forest, as extensions northwards and upwards in mountain areas, and as an increase in biomass, NPP and LAI. The model also projected that shade-intolerant broadleaved summergreen trees will be found further north and higher up in the mountain areas. Surprisingly, shrublands will decrease in extent as they are replaced by forest at their southern margins and restricted to areas high up in the mountains and to areas in northern Russia. Open ground vegetation will largely disappear in the Scandinavian mountains. Also counter-intuitively, tundra will increase in abundance due to the occupation of previously unvegetated areas in the northern part of the Barents Region. Spring greening will occur earlier and LAI will increase. Consequently, albedo will decrease both in summer and winter time, particularly in the Scandinavian mountains (by up to 18%). Although this positive feedback to climate could be offset to some extent by increased CO2 drawdown from vegetation, increasing soil respiration results in NEE close to zero, so we cannot conclude to what extent or whether the Barents Region will become a source or a sink of CO2.  相似文献   
49.
The development of a regional stratigraphy in Palaeoproterozoic basins within the Tanami region, Northern Australia has been hindered by the difficulty of discriminating sedimentary units and facies across this isolated and poorly exposed basin. A regional stratigraphy is important as it provides constraints on sedimentary basin evolution and assists in gold exploration. Gold is known to be more concentrated in certain rock formations. Based on Nd isotopes and whole rock geochemistry, five main sedimentary events have been identified in the Tanami region. Some sedimentary units were derived from homogeneous local sources, whereas others contain evidence of a well-mixed fine-grained remote provenance. Within the basins, major gold-bearing lithologies are characterised by mafic source indicators: (1) high Cr/Th ratios; (2) low Th/Sc ratios; (3) low (La/Yb)PAAS ratios relative to Post-Archaean Average Shale (Taylor and McLennan 1985); (4) Eu anomalies equal to ∼1; and (5) distinctive ranges in initial ε Nd values. Potential future exploration target areas have been identified in the Tanami region at the Cashel and Sunline prospects using these geochemical parameters.  相似文献   
50.
ABSTRACT

The AHI-FSA (Advanced Himawari Imager - Fire Surveillance Algorithm) is a recently developed algorithm designed to support wildfire surveillance and mapping using the geostationary Himawari-8 satellite. At present, the AHI-FSA algorithm has only been tested on a number of case study fires in Western Australia. Initial results demonstrate potential as a wildfire surveillance algorithm providing high frequency (every 10 minutes), multi-resolution fire-line detections. This paper intercompares AHI-FSA across the Northern Territory of Australia (1.4 million km2) over a ten-day period with the well-established fire products from LEO (Low Earth Orbiting) satellites: MODIS (Moderate Resolution Imaging Spectroradiometer) and VIIRS (Visible Infrared Imaging Radiometer Suite). This paper also discusses the difficulties and solutions when comparing high temporal frequency fire products with existing low temporal resolution LEO satellite products. The results indicate that the multi-resolution approach developed for AHI-FSA is successful in mapping fire activity at 500?m. When compared to the MODIS, daily AHI-FSA omission error was only 7%. High temporal frequency data also results in AHI-FSA observing fires, at times, three hours before the MODIS overpass with much-enhanced detail on fire movement.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号